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Background: Large variation regarding prescription and dose inhomogeneity exists in stereotactic body radiation therapy

(SBRT) for early-stage non-small cell lung cancer. The aim of this modeling study was to identify which dose metric cor-

relates best with local tumor control probability to make recommendations regarding SBRT prescription.

Methods and Materials: We combined 2 retrospective databases of patients with non-small cell lung cancer, yielding 1500

SBRT treatments for analysis. Three dose parameters were converted to biologically effective doses (BEDs): (1) the (near-

minimum) dose prescribed to the planning target volume (PTV) periphery (yielding BEDmin); (2) the (near-maximum) dose

absorbed by 1% of the PTV (yielding BEDmax); and (3) the average between near-minimum and near-maximum doses

(yielding BEDave). These BED parameters were then correlated to the risk of local recurrence through Cox regression.

Furthermore, BED-based prediction of local recurrence was attempted by logistic regression and fast and frugal trees. Models

were compared using the Akaike information criterion.

Results: There were 1500 treatments in 1434 patients; 117 tumors recurred locally. Actuarial local control rates at 12 and 36

months were 96.8% (95% confidence interval, 95.8%-97.8%) and 89.0% (87.0%-91.1%), respectively. In univariable Cox

regression, BEDave was the best predictor of risk of local recurrence, and a model based on BEDmin had substantially less

evidential support. In univariable logistic regression, the model based on BEDave also performed best. Multivariable classi-

fication using fast and frugal trees revealed BEDmax to be the most important predictor, followed by BEDave.

Conclusions: BEDave was generally better correlated with tumor control probability than either BEDmax or BEDmin. Because

the average between near-minimum and near-maximum doses was highly correlated to the mean gross tumor volume dose,

the latter may be used as a prescription target. More emphasis could be placed on achieving sufficiently high mean doses

within the gross tumor volume rather than the PTV covering dose, a concept needing further validation. � 2020 Elsevier

Inc. All rights reserved.

Introduction

Stereotactic body radiation therapy (SBRT) is defined as a

method of external beam radiation therapy in which a clearly

defined extracranial target volume is treated with high pre-

cision and accuracy with a high radiation dose in a single or a

few fractions with locally curative intent.1 SBRT is increas-

ingly used for the treatment of primary non-small cell lung

cancer (NSCLC),1 prostate cancer,2 hepatic cancers,3 and

other primary malignancies as well as extracranial oligo-

metastases.4-6 The technological, quality, and dosimetry re-

quirements for performing SBRT have been summarized in

multiple national and international guidelines1,7-9 and

recently in detail in report 91 of the International Commis-

sion on Radiation Units and Measurements (ICRU), pub-

lished in 2017.10 According to the ICRU report 91, doses in

SBRT should be prescribed to the planning target volume

(PTV) covering the isodose surface. However, current SBRT

practice frequently uses inhomogeneous dose distributions

within the target volume, and large interinstitutional and

intrainstitutional variation in the degree of dose in-

homogeneity has been reported in planning studies11 and in

clinical routine12-14; this important issue of dose prescription

remains unspecified in ICRU report 91. According to a recent

review of ICRU report 91, “[t]his comes as no surprise as

there is a lack of consensus on the most relevant dosimetric

parameters influencing local tumor control.”15

Many previous studies have either correlated the

isocenter/near-maximum dose or the dose prescribed to the

PTV periphery with tumor control probability (TCP).16-20

However, these single dose-volume histogram parameters

do not comprehensively describe the dose distribution within

the PTV and are therefore insufficient in particular for

reproducible inverse treatment planning. The aim of this

paper is to identify whether a combination of both dose pa-

rameters would be better associated with local tumor control,

which would allow better standardization of SBRT practice.

This study is based on 2 large, retrospective patient databases

that contain sufficiently large variation in SBRT practice to

identify optimal SBRT planning characteristics.

Methods and Materials

Patients and treatments

This modeling study is based on 2 large retrospective da-

tabases of patients with early-stage NSCLC treated with
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SBRT (1-10 fractions, median 3 fractions). One is the

Elekta Collaborative Lung Research Group (ECLRG)

database16,21; the other is the database of the working group

“Stereotactic Radiotherapy and Radiosurgery” of the

German Society for Radiation Oncology (DEGRO).13,17

Except for 59 treatments performed with a robotic linear

accelerator (CyberKnife), all SBRT was delivered using 6

to 18 MV photons delivered by standard clinical linear

accelerators; for details on treatment planning, patient

immobilization, and image guidance, see the references

given above. Only patients with stage I disease according to

the seventh lung cancer TNM classification and staging

system22 with complete information on prescribed PTV

dose and number of fractions and not lost to follow-up

within 1 month were considered for this analysis. Follow-

up was defined as the time interval between the start of

SBRT and local failure or censoring, respectively. This

resulted in 875 patients treated for 940 lesions from the

ECLRG database and 559 patients treated for 560 lesions

from the DEGRO database. Regular computed tomography

scans were performed during follow-up, and local recur-

rence was defined as radiologic disease progression in the

treated lung parenchyma.

Three PTV dose-volume histogram parameters per

SBRT were considered in this study: (1) dose prescribed to

the PTV periphery (the near-minimum dose Dmin); (2) the

dose absorbed by 1% of the PTV (PTV D1% or near-

maximum dose Dmax); and (3) the average between Dmin

and Dmax (Dave) as a proxy for the mean dose received by

the tumor. For 483 patients lacking PTV D1%, this dose

parameter was estimated from the isocenter doses based on

a linear regression equation derived from 147 treatments for

which both PTV D1% and isocenter doses were available

(Appendix EA.1, available online at https://doi.org/10.

1016/j.ijrobp.2020.03.005).

Statistical analysis

For every patient i; Dmin, Dmax, and their average, Dave,

were converted to biologically effective doses (BEDs) ac-

cording to

BEDiZniDi

�

1 þ
Di

a=b

�

ð1Þ

where ni denotes the number of fractions, Di the dose per

fraction, and a/b is set to 10 Gy.

Collinearity among the 3 dose parameters (BEDmin,

BEDmax, BEDave) was assessed using variance inflation

factors (VIFs) and hierarchical clustering with Spearman’s

rank correlation coefficients (r) as the similarity measure.23

In the first analysis, the 3 BED parameters were then

correlated to the risk of local recurrence through Cox

regression using the full sample of 1500 treatments. A

separate Cox model was fitted to each dose parameter and

each possible combination of dose parameters. The best-

fitting model was determined based on the Akaike infor-

mation criterion with second-order bias correction (AICc).

Differences in AICc measure the strength of evidence for

one model over another, and models differing by more than

8 from the model with the lowest AICc were considered to

have substantially less evidential support from the data.24

In a second analysis, we treated the prediction of local

tumor control as a classification task that presupposes that

there are 2 classes of tumors: one that remains locally

controlled and one that will regrow. Toward this aim, we

decided to assume tumors as controlled if they remained

controlled after at least 4 years of follow-up; only 7 out of

117 local recurrences (6%) were recorded after 4 years.

Patients lost to follow-up (censored) before 4 years were

therefore not considered for this analysis, yielding a sample

of 386 patients with 401 treated tumors, of which 117 had

recurred. The resulting data set was thus more balanced

with respect to the binary endpoint of local control and

local failure than the full data set.

The main classification method was logistic regression

(LR), which estimates for each treated tumor a TCP by

fitting

yiZ
exp

�

b0 þ x
T

i
b
�

1 þ exp ðb0 þ xT
i
bÞ

ð2Þ

where yiZ 1 if the tumor was controlled for patient i or

yiZ 0 otherwise, and x
T

i
bZ

P

p

jZ1

xijbj denotes the scalar

product between the dose vector for patient i (consisting of

p dose parameters, p˛f1; 2; 3g) and the corresponding

vector of regression coefficients bZðb1;.; bpÞ: Note that

for univariable analysis xijZxi1Z BEDi; and the regression

coefficients can be related to the well-known TCP model

parameters introduced by Okunieff et al25 through

TCD50 Z �
b0

b1
ð3Þ

and

kZ
1

b1
ð4Þ

As in Cox regression, the various LR classification

models were also compared using the AICc24 and by their

(balanced) prediction accuracy (the average between

sensitivity and specificity). Sensitivity denotes the proba-

bility of classifying a tumor as locally controlled given that

it remains locally controlled, and specificity denotes the

probability of classifying a tumor as recurrent given that it

will regrow.

In a third analysis, we performed variable selection

using 2 further classification algorithms: (1) LR with the

least absolute shrinkage and selection operator (LASSO)

method, which shrinks regression coefficients of unimpor-

tant variables to 026; and (2) fast and frugal trees (FFTs).

FFTs are decision trees with exactly 2 branches extending

from each node, and either one or both branches are an exit

branch leading to a classification decision.27 This makes

them easily interpretable and potentially attractive for

clinical decision-making.
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For all classification models, the test performance was

estimated by randomly splitting the data set into 2 equal-

sized parts, of which one was used for training the classifier

and the other was used as a test set. This was repeated 100

times. Using LASSO and FFTs, the relative “importance”

of the 3 dose parameters was estimated as the frequency

with which each dose parameter was selected into a trained

model and used for classification.

All analyses were performed in R version 3.5.0 with the

glmnet package for building LASSO models and the

FFTrees package for building FFTs. The latter were con-

structed by maximizing the weighted accuracy given by

w� sensitivityþð1�wÞ � specificity

with w Z 0.4 at each feature selection level because in

practice specificity (correct classification of local failure)

could be judged as more important than sensitivity. The

“ifan” algorithm, which assumes independence among the

features, was used for feature selection because it resulted

in more intuitively interpretable trees than the “dfan” al-

gorithm, which assumes dependencies among the features.

The final tree was selected from a fan of 4 trees as the one

having the highest weighted accuracy.

Statistical significance was defined as P values <.005.28

Results

General sample description

There were 1500 treatments in 1434 patients, of which 117

tumors did not remain locally controlled after a median

follow-up of 20.7 months (range, 0.6-139 months). The

median time to development of local recurrence was 15

months (range, 0.6-76.3 months). Actuarial local control

rates at 12, 24, and 36 months were 96.8% (95% confidence

interval, 95.8%-97.8%), 91.4% (89.7%-93.2%), and 89.0%

(87.0%-91.1%), respectively. Characteristics of the full

sample and the subset of treatments used for classification

are given in Table 1.

PlottingDave against the planned gross tumor volume (GTV)

mean dose (GTV Dmean, Appendix EA.2, available online at

https://doi.org/10.1016/j.ijrobp.2020.03.005) for the subset of

our data for which the latter was known, we could show that

bothwere highly correlated according toGTVDmeanZ 0.207

þ 1.096 � Dave. Using correlation coefficients, the GTV

Dmean was closely correlated with Dave (rZ 0.931) and Dmax

(rZ 0.927), but not with Dmin (rZ 0.714). There was also a

strong correlation between the BED based on the GTVDmean

and BEDave (r Z 0.962; Appendix EA.3, available online at

https://doi.org/10.1016/j.ijrobp.2020.03.005), and their relation

could be described by the formulaBEDGTV_DmeanZ�7.838þ
1.237 � BEDave, showing that the BED based on the average

between Dmin and Dmax tended to systematically overestimate

the BED based on the GTV Dmean byz8 Gy10.

Cox regression modeling results

The correlation between BEDmin and BEDmax in the com-

plete sample of 1500 SBRT treatments was rZ 0.78, and it

was 0.92 and 0.95 for correlations between BEDmin and

BEDave and BEDmax and BEDave, respectively. Cluster

analysis classified BEDmax and BEDave into the same

cluster, distinct from BEDmin. These correlations were

consistent with the VIFs, which indicated moderate

collinearity between BEDmin and BEDmax but substantial

collinearity between all other dose parameter combinations.

In Cox regression, the best fit was obtained with a uni-

variable model based on BEDave (AICc Z 1505.0), fol-

lowed by the multivariable model including both BEDave

and BEDmin (AICc Z 1506.59) and the model including

BEDave and BEDmax (AICc Z 1506.63). There was no

substantial evidential difference among the univariable and

multivariable Cox models except for the univariable Cox

Table 1 Baseline characteristics of our sample used for Cox regression and classification*

Characteristic

Complete sample

(N Z 1500)

Subset with local

control at least until

4 y (N Z 284)

Subset with local failure

(N Z 117) P value

Age, y 75 (31-93) 75 (31-93) 75 (50-88) .697

Sex Male: 855 (57%) Male: 145 (51%) Male: 67 (57%) .273

Female: 645 (43%) Female: 139 (49%) Female: 50 (43%)

Tumor size, cm 2.2 (0.5-5.0) (missing for 235) 1.9 (0.7-5.0) (missing for 17) 2.5 (1.0-4.8) (missing for 17) 4.802 � 10e5

Dmin, Gy 48 (12-64) 54 (12-60) 48 (19.2-64) 4.208 � 10e9

BEDmin, Gy10 105.6 (16.8-180) 132 (16.8-180) 105.3 (43.2-180) 4.404 � 10e15

Dmax, Gy 66 (19.3-95.6) 68.6 (23.2-89.9) 62 (25.1-95.6) 1.464 � 10e10

BEDmax, Gy10 178.5 (50-377) 205.3 (77-353) 156.6 (70-326.5) 1.122 � 10e13

Dave, Gy 56.8 (17.8-76.5) 60.6 (20.4-75) 54.2 (22.2-72.6) 9.934 � 10e11

BEDave, Gy10 138.3 (49-269.7) 166.7 (56.1-241.9) 129.7 (55.9-248) 2.326 � 10e14

Abbreviation: BED Z biologically effective dose.

* Differences between continuous and categorical variables of tumors that remained locally controlled and recurrent, respectively, were tested using the

Wilcoxon rank sum test and Fisher’s exact test, respectively.
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model based on BEDmin, which had AICc Z 1516.04,

rendering it substantially worse than all other models.

Logistic regression and FFT classification results

In the data set of 401 treatments used for classification, the

Spearman’s rank correlation coefficients among the 3 BED

parameters and their VIFs in the LR models were compa-

rable to those reported for Cox regression on the complete

data set. Accordingly, in the LR model containing BEDmin

and BEDmax, both variables were significantly associated

with TCP, but if BEDmin or BEDmax were included in a

model in addition to BEDave, their regression coefficient

standard errors became inflated and P values became

correspondingly large. The multivariable LR models yiel-

ded AICc values of 421.1 to 421.3 (2 dose parameters) and

423.0 (3 dose parameters). Characteristics of the uni-

variable LR classification model fits are given in Table 2,

and their predicted TCP curves as a function of BED are

plotted in Figure 1. The AICc values show that the model

based on the average dose (BEDave) was preferred over all

the other models, with substantially more evidence in its

favor compared with the model based on BEDmax. The

classification performance measures in Table 2 assume that

a tumor will be controlled if its TCP is �70%. The 70%

threshold was chosen as a compromise in achieving both

high sensitivity and specificity (ie, it was close to the

threshold maximizing accuracy of the individual LR clas-

sifiers). Given this threshold, the model based on BEDave

also achieved the highest classification accuracy. For an

alternative threshold of TCP �90%, the models predicted

that BEDave >196 Gy10 and BEDmax >255 Gy10 would

have to be prescribed to the PTV.

The FFT maximizing weighted accuracy with a sensi-

tivity weight of 0.4 is depicted in Figure 2. This tree used

all dose parameters for classification and implied that

BEDmax was the best predictor of local failure. The sensi-

tivity, specificity, and accuracy achieved on the training

data were 51.8%, 86.3%, and 69.0%, respectively.

Table 3 shows the estimated test performance of all models

that was obtained after splitting the data set into a training and

test set 100 times and averaging the results. The test perfor-

mance was evaluated for 2 sensible TCP thresholds separately

(70%and90%) to show the effects on sensitivity and specificity.

The results show that selecting a lower TCP threshold of 70%

compared with 90% results in a much higher rate of correctly

classified tumors that were locally controlled (sensitivity) and

higher overall accuracy. At the 70%classification threshold, the

model based on Dmin had a significantly lower classification

accuracy than that basedonDmax (PZ6.722� 10e8) orDave (P

< 2.2� 10e16). At the 90% threshold, however, the difference

in model accuracy among the 3 univariable dose parameter

modelswas not significant (LRmodel based onDminvsDmax:P

Z .375; Dmin vs Dave: PZ .039). The FFTs achieved compa-

rable accuracy to the LR models, although they had a signifi-

cantly lower area under the curve.

The majority of LASSO models (93%) included 2 dose

parameters, with the importance of predictors being BEDave

(selected into 92% of models) before BEDmin (85%) and

BEDmax (18%). For FFTs, the importance of predictors was

BEDmax (selected into 100% of the trees) before BEDave

(99%) and BEDmin (66%).

Discussion

In SBRT, there can be substantial heterogeneity in the PTV

dose prescription and distribution, with dose differences

between the isocenter and PTV periphery of up to 50%. It is

therefore not possible to know a priori which reported

dosimetric parameter will best describe the doseeeffect

relationship. In this work, we investigated the importance

of the 3 most relevant dosimetric parameters within the

context of SBRT: (1) the dose prescribed to the isodose

surface encompassing the PTV or near-minimum dose

(Dmin), which is recommended by ICRU report 9110; (2) the

PTV D1% or near-maximum dose (Dmax); and (3) the

average between Dmin and Dmax (Dave).

Previous meta-analyses based on LR modeling and

including both conventionally and hypofractionated treatments

of early-stage NSCLC have established doseeresponse re-

lationships for both Dmin
19,29 and Dmax

19,30,31 after conversion

intoBEDs, aswell asDave after conversion into equivalent doses

in 2-Gy fractions.32 In this work, we correlated these dose pa-

rameters after conversion into BEDs with the risk of local

recurrence using Cox regression and to TCP using logistic

regression and FFTs. We thereby found that most generally

BEDave was the best predictor of tumor response. In Cox

regression, there was also evidence that the model based on

BEDmin resulted in a substantially worse fit to the data than

Table 2 Characteristics of the univariable logistic dose-response models*

Model parameter TCD50, Gy k, Gy AICc Sensitivityy, % Specificityy, % Accuracyy, % BED for 70% TCP, Gy10

BEDmin 50.9 29.7 423.7 79.4 61.0 70.2 77

BEDmax 59.2 55.2 428.9 74.9 64.0 69.4 106

BEDave 62.6 38.0 420.0 75.3 68.0 71.6 95

Abbreviations: AICc Z Akaike information criterion with second-order bias correction; BED Z biologically effective dose; TCP Z tumor control

probability.

* TCD50 and k are the TCP model parameters that can be computed from the logistic regression coefficients b0 and b1 (Equations 3 and 4).
y The classification performance is based on a probability threshold of 70% for classifying a tumor as locally controlled.
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models based on the other dose parameters or combinations

thereof. BEDmin was also the least important predictor in the

FFTmodel (Fig. 2). In the LRmodel, however, theworst fitwas

not obtained for BEDmin but for BEDmax. One explanation for

this result could follow from the collinearity among the 3 dose

parameters.Hierarchical cluster analysis andVIFs revealed that

although BEDmin and BEDmax were only moderately corre-

lated, there was high collinearity among all other BED com-

binations. Collinearity explains why adding more dose

parameters to BEDave did not improve model performance and

why performance was not clearly superior for one parameter

over the others. One possible way to deal with collinearity is to

combine the correlated variables into a single parameter,33

which is what we effectively did when creating Dave as the

average between Dmin and Dmax. This could explain why

models based onBEDave had a highermaximum likelihood and

hence smallerAICcvalues than thosebasedoneitherBEDminor

BEDmax. Another possibility is to build clusters of variables and

select 1 representative variable from each cluster.34 It follows

that aside from BEDmin, either BEDave or BEDmax could be

chosen as the second variable for making predictions of TCP.

This is what the LASSO method has effectively done.

The estimated LR test performance (ie, the performance

expected when applied to a new data set) depended on the

choice of the TCP threshold used for classification. The

optimal threshold at which the maximum accuracy was

achieved varied among the different dose parameters.

However, in practice one does not know the optimal

threshold and has to decide on a certain probability cutoff.

Our choices of 70% and 90% represent 2 possible choices

for assuming a tumor is locally controlled. The 70%

threshold was close to the TCP threshold at which the LR

models achieved the highest accuracy when trained and

applied to the complete data set. In both cases, BEDave

yielded the highest accuracy.

Our results somewhat contradict a previous analysis on a

subset of the ECLRG database in which a better correlation

between local relapse and BEDmin compared with BEDave

or BEDmax was observed in receiver operating character-

istics analysis.35 However, this previous analysis only

included 26 patients with local relapse, so the robustness of

its findings could be questioned. Modeling studies per-

formed on the DEGRO database17 and a collection of

published study results19 showed that SBRT isocenter doses

(approximately BEDmax) were better correlated with TCP

than BEDmin. Furthermore, a meta-analysis from 2012

including 15 SBRT studies found no significant correlation

between the PTV prescription dose and TCP of early-stage

NSCLC.36 We have previously argued that isocenter doses

might be more representative of the doses actually absorbed

by the tumor, and the dose prescribed to the PTV periphery

might be a suboptimal surrogate for the “true” therapeutic

dose given the SBRT-typical inhomogeneity of dose
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Fig. 1. Visualization of the logistic TCP models given in Table 2. There is 1 TCP point for each of 6 equally spaced bins

along the biologically effective dose axis, and each TCP point was calculated by dividing the number of locally controlled

tumors by the total number of tumors treated with a biologically effective dose falling within a given bin. Vertical bars

represent Bayesian binomial 95% confidence intervals estimated according to Cameron.43 Abbreviation: TCP Z tumor

control probability.
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body radiation therapy outcomes with 117 local relapses.
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distribution within the GTV, the variability of safety mar-

gins and GTV sizes, and tumor movement, as well as un-

certainties concerning the actual delivered dose owing to

limitations of the adopted dose calculation algorithms used

for treatment planning.17 Along these lines, Bibault et al

showed that PTV D95% doses calculated by a type A al-

gorithm correlated only weakly with GTV Dmean calcu-

lated by a Monte Carlo algorithm, in particular for small

GTVs (<20 cm3).37 We confirm these results because in

our cohort the GTV Dmean was closely correlated with

Dave and Dmax, but not with Dmin.

An important clinical implication of our results is that,

because doses at the PTV periphery are less accurate for pre-

dicting TCP, higher emphasis could be placed on achieving

sufficiently high mean and maximum doses within the GTV

rather than the PTV-covering dose. In other words, the GTV

Dmean may be a more important prescription target than the

PTV-encompassing dose. However, note that in the FFT

depicted in Figure 2, all 3 dose parameters were required to

exceed a particular threshold for a tumor to be classified as

staying locally controlled. Furthermore, a recent study found

that too little dose in a 30-mmshell around the PTVinSBRT for

early-stage NSCLC was associated with an increased risk of

distant metastasis,38 whichdif confirmed as a causal associa-

tiondwould emphasize the importance of sufficient dose to the

PTV periphery and beyond for reasons other than local control.

As a major limitation of this study, a large number of

data important from a radiobiological perspective were

missing, in particular equivalent uniform doses39 that might

correlate even better to TCP than the dose parameters tested

here, with the PTV D1% missing for 483 treatments that we

had to estimate from isocenter doses and maximum tumor

diameters missing for 235 tumors. Tumor size could be a

confounder because it might be correlated to both dose (the

cause) and tumor control (the effect). Maximum tumor

diameters were significantly smaller in tumors that

remained locally controlled (Table 1) and were positively

correlated with Dmin (r Z 0.080, P Z .0045), Dmax (r Z

0.124, P Z 9.17 � 10e6), and Dave (r Z 0.114, P Z 4.77

� 10e5). However, there was only a small and nonsignifi-

cant correlation between BED parameters and tumor

diameter (all Spearman’s jrj � .03, P > .25), because larger

tumors tended to receive a larger number of fractions (r Z

0.048, P Z .091). When we restricted the analysis to tu-

mors with known sizes and adjusted for maximum tumor

diameter, the results did not change qualitatively.

Another limitation is that this study is only based on

planned doses, not taking their uncertainties into account.

Furthermore, converting doses to BED comes with a

scaling effect that makes small dose differences in deliv-

ered dose appear larger. However, when we restricted the

analysis to 727 SBRT treatments performed with 3 frac-

tions only and used physical doses instead of BEDs, the

average dose remained a better predictor of TCP than the

PTV prescription dose (Dmin) in both Cox and logistic

regression, as shown in Appendix EA.4 (available online at

https://doi.org/10.1016/j.ijrobp.2020.03.005).

Finally, our BED calculations are based on the linear-

quadratic model with an a/b ratio of 10 Gy. Although the

validity of this model has been questioned for SBRT,40

analyses based on clinical data have not provided evi-

dence that it should be abandoned.41 Concerning the a/b
ratio for SBRT of early-stage NSCLC, we have recently

shown that a/b Z 10 Gy was consistent with individual

local tumor control data, although somewhat higher esti-

mates in the range of 12 to 16 Gy yielded better model

fits42; nevertheless, we here decided to use a/b Z 10 Gy to

ease the comparison of our BED thresholds with past

studies. We emphasize that because of these limitations, our

results need validation in different data sets.

Conclusions

BEDs based on the average between near-maximum and

near-minimum doses (BEDave) were better correlated with

TCP than either of these dose parameters alone, although the

evidence supporting BEDave as a superior predictor of TCP

was not substantial except compared with BEDmin in the Cox

model and BEDmax in logistic regression. Because Dave was

highly correlated to GTV Dmean as both physical dose and

BED, the latter may be used as a prescription target aside

from the PTV-encompassing dose and should yield a BED of

at least 150 Gy10 to achieve a TCP exceeding 90%.

Table 3 Estimated test performance of the different classifiers

Model AUC

Sensitivity at

90% TCP

Specificity at

90% TCP

Accuracy at

90% TCP

Sensitivity at

70% TCP

Specificity at

70% TCP

Accuracy at

70% TCP

LR: BEDmin 0.737 � 0.027 20.9 � 21.6 92.0 � 8.8 56.4 � 6.5 55.4 � 6.6 72.8 � 5.9 64.1 � 2.6

LR: BEDmax 0.735 � 0.028 18.5 � 8.7 93.1 � 3.7 55.8 � 3.0 63.9 � 5.1 68.6 � 7.6 66.3 � 2.9

LR: BEDave 0.740 � 0.027 24.2 � 11.0 91.8 � 4.6 58.0 � 3.6 59.6 � 5.9 75.0 � 6.7 67.3 � 2.2

LR: BEDmin

þ BEDmax

0.737 � 0.028 26.4 � 14.7 90.8 � 5.9 58.6 � 4.8 58.6 � 6.6 73.5 � 7.4 66.1 � 3.0

LR: LASSO 0.738 � 0.028 18.7 � 14.3 93.4 � 6.0 56.1 � 4.5 58.4 � 7.4 73.8 � 7.6 66.1 � 3.0

FFTs* 0.677 � 0.027 55.3 � 7.5 80.1 � 10.0 67.7 � 2.9 55.3 � 7.5 80.1 � 10.0 67.7 � 2.9

Abbreviations: AUC Z area under the curve; BED Z biologically effective dose; FFT Z fast and frugal tree; LASSO Z least absolute shrinkage and

selection operator; LR Z logistic regression; TCP Z tumor control probability.

* Note that the FFTs produce a discrete output (probability either 0 or 1).
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Appendix A 

A.1 Estimation of PTV D1% from isocenter dose 

All SBRT treatments from the xxx database had isocenter doses available, but PTV D1% was only 

available for a subset of 79 SBRT treatments from two institutions (Schweinfurt and Güstow). In 

contrast, the DVH parameters PTV D1% and GTV mean dose were available for all treatments within 

the ECLRG database. We therefore used the 79 treatments from the DEGRO database and 68 

treatments from the ECLRG database from the University hospital of Würzburg for which both PTV 

D1% and isocenter doses were available in order to derive a linear regression equation which was 

used to estimate PTV D1% doses for all DEGRO treatments lacking DVH parameters (Figure A1). 

Figure A1: Calibration line for transforming Dmax in the DEGRO database to a D1% PTV parameter. The 

transformation is based on 68 treatments from the University Hospital of Würzburg (Germany) which 

are shared by both databases, 20 treatments from the Leopoldina Hospital in Schweinfurt (Germany) 



and 59 treatments from the Cyberknife center in Güstrow (Germany) for which both variables were 

available. 

 

A.2 Estimation of GTV mean dose from isocenter and prescribed dose 

 
Figure A2: Correlation between Dmean and the GTV mean dose based on 940 treatments from the 

ECLRG database, 59 patients from the Cyberknife center in Güstrow (Germany) and 18 treatments 

from the Leopoldina Hospital Schweinfurt (Germany) for which GTV mean dose, PTV 1% and the 

prescribed dose to the PTV periphery were known. 

 

  



A.3 Estimation of BED based on GTV mean dose from BEDave 

 

Figure A3: Correlation between BEDave and the BED based on the GTV mean dose adopting an α/β 

ratio of 10 Gy. The figure is based on the same subset of the data as Figure A2. 

  



A.4 Analysis restricted to physical doses delivered in three fractions  

We performed a re-analysis on the subgroup of patients having received three fractions, so that 

physical doses instead of BEDs could be used for modelling. In total, 727 SBRTs were performed with 

three fractions; median prescription doses (Dmin) and PTV D1% (Dmax) were 54 Gy (range 12−60 Gy) 

and 68.6 Gy (32.9−92.4 Gy), respectively., resulting in a median Dave of 59.0 Gy (28.6−76.2 Gy). 

Building a multivariable Cox model from all three dose parameters with the LASSO method resulted 

in Dmax and Dave being selected into the model, but not Dmin. While the univariable Cox model based 

on Dmax showed the best fit according to the AICc (378.3), it performed almost equal to the model 

based on Dave (AICc=378.6), and both models had somewhat more evidential support than the model 

based on Dmin (AICc=381.7). There was no substantially better support for multivariable models 

compared to the univariable models. Building logistic regression models for classifying 33 local 

recurrences and 159 tumors that remained locally controlled over at least 4 years, Dave (AICc=164.7) 

was a better predictor than either Dmax (AICc=167.0) or Dmin  (AICc=167.4). The LASSO method 

selected only Dave into a potentially multivariable logistic regression model. Finally, a fast and frugal 

tree built on all three dose parameters used only Dmax and Dave for deciding between local control and 

recurrence (Figure A4). 

 

Figure A4: Fast and frugal tree fitted to a 

subset of tumors which had been treated with 

three fractions and had either locally recurred 

(N=33) or stayed controlled for at least four 

years of follow-up (N=159).  
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