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Summary

We show that a support vec-
tor machine (SVM) classifier
outperforms a multivariate
logistic model in predicting
tumor control probability
after stereotactic body radia-
tion therapy for early stage

Background: Several prognostic factors for local tumor control probability (TCP) after stereo-
tactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) have
been described, but no attempts have been undertaken to explore whether a nonlinear combina-
tion of potential factors might synergistically improve the prediction of local control.
Methods and Materials: We investigated a support vector machine (SVM) for predicting TCP in
a cohort of 399 patients treated at 13 German and Austrian institutions. Among 7 potential input
features for the SVM we selected those most important on the basis of forward feature selection,
thereby evaluating classifier performance by using 10-fold cross-validation and computing the
area under the ROC curve (AUC). The final SVM classifier was built by repeating the feature
selection 10 times with different splitting of the data for cross-validation and finally choosing
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non-small cell lung cancer in
a cohort of 399 patients.
Sensitivity and specificity of
the SVM were
67.0% � 0.5% and
78.7% � 0.3%, respectively.
These results suggest that
machine learning techniques
can be applied successfully
to improve tumor control
probability predictions.

only those features that were selected at least 5 out of 10 times. It was compared with a multi-
variate logistic model that was built by forward feature selection.
Results: Local failure occurred in 12% of patients. Biologically effective dose (BED) at the iso-
center (BEDISO) was the strongest predictor of TCP in the logistic model and also the most
frequently selected input feature for the SVM. A bivariate logistic function of BEDISO and
the pulmonary function indicator forced expiratory volume in 1 second (FEV1) yielded the best
description of the data but resulted in a significantly smaller AUC than the final SVM classifier
with the input features BEDISO, age, baseline Karnofsky index, and FEV1 (0.696 � 0.040 vs
0.789 � 0.001, P<.03). The final SVM resulted in sensitivity and specificity of
67.0% � 0.5% and 78.7% � 0.3%, respectively.
Conclusions: These results confirm that machine learning techniques like SVMs can be success-
fully applied to predict treatment outcome after SBRT. Improvements over traditional TCP
modeling are expected through a nonlinear combination of multiple features, eventually helping
in the task of personalized treatment planning. � 2014 Elsevier Inc.

Introduction

Stereotactic body radiation therapy (SBRT) is the treatment of
choice for inoperable patients with early-stage non-small cell lung
cancer (NSCLC). Clinical studies have shown that SBRT can
result in excellent local control rates exceeding 90% with
concurrently low toxicity rates, but efforts to accurately model the
probability of tumor control (TCP) are still ongoing.

A doseeresponse relationship between the biologically effec-
tive dose (BED) and TCP in NSCLC is well established (1-4).
BED is defined as the total dose that is needed to achieve the same
biological effect in a tumor or organ as the treatment schedule
under consideration if infinitesimally small doses were to be
applied in an infinitely large number of fractions. Besides dose, it
has been shown that nondosimetric factors such as tumor volume
(5), glucose metabolic rate (6), tumor hypoxia (7), and oncogene
activation (8) may play a fundamental role in determining tumor
control after radiation in NSCLC. This implies that the full wealth
of dosimetric, clinical, imaging, and molecular data now available
for individual patients should be used together to obtain the
highest possible accuracy of outcome predictions and aid in
clinical decision support (9). Currently, however, most outcome
predictions for NSCLC patients treated with SBRT rely on simple
cutoffs (10, 11) or on fitting a logistic TCP function, with only a
few attempts to incorporate other features besides dose to improve
TCP predictions (5, 7). Such predictive models have successfully
been used to identify doseeresponse relationships and to establish
critical dose thresholds for achieving high tumor control rates
>90% (12, 13). However, they also leave the investigator with the
difficult task of identifying and modeling the interaction between
variables that determines the outcome, whereas their mathematical
framework often lacks the flexibility to realistically model such
interactions. In this regard, machine learning techniques may be a
better alternative because they allow for combining several fea-
tures to build adaptive models based on the information contained
in the data and thus do not depend on assumed mathematical re-
lationships between dose and response (8, 14).

In machine learning, a classifier is trained on a set of data with
known class labels so that it “learns” the distribution of the different
classes in a multidimensional feature space (15). Machine learning
algorithms are useful tools for data mining approaches (ie, the sys-
tematic investigation of all available datawith thegoal of discovering
new patterns and new predictive variables that could lead to better
prediction accuracy and insights into causative factors). For example,
Chen et al (16) showed that by combining dosimetric and patient-

specific features in a support vector machine (SVM), the predic-
tion of severe radiation-induced pneumonitis in NSCLC patients
could be improved compared with using dosimetric quantities alone.
Similarly, Naqa et al (14) demonstrated that SVMs performed better
than both multivariate logistic regression and mechanistic radiobi-
ological models in predicting TCP for a set of 56 NSCLC patients
treated with 3-dimensional conformal radiation therapy, particularly
for those at high risk for local failure. Using a Bayesian network
approach, Oh et al (17) revealed the usefulness of inflammatory and
hypoxia biomarkers in addition to treatment plan-related variables
for improving local control predictions after radiation therapy in
advanced NSCLC patients. Finally, SVM-based integration of
multidimensional gene expression profiling data has led to improved
outcome predictions in various cancers, including breast (18) and
nasopharyngeal carcinoma (19).

In this work we investigate for the first time the performance of
an SVM algorithm for predicting TCP after SBRT for stage I
NSCLC based on a large multi-institutional database. Our hypoth-
esis was thereby that the more flexible SVM would lead to im-
provements over a “traditional” multivariate logistic TCP model.

Methods and Materials

Patient characteristics

This analysis is based on a cohort of 582 patients with stage I
NSCLC who were treated at 13 German and Austrian institutions
between 1998 and 2011 as described recently by Guckenberger
et al. (11). In the current analysis we used 399 patients with
detailed information of tumor stage (clinical stage IA or IB) and a
minimum follow-up time of 6 months. Forty-nine (12%) of these
patients had a local recurrence after 6 months of follow-up. This
was used as ground truth during classification. For the sake of
consistency and because most nominal variables were unknown
for a large fraction of patients, we decided to restrict analysis to
continuous variables. To reduce collinearity among the dosimetric
features, analysis was further restricted to considering only bio-
logically effective doses at the isocenter (BEDISO) and planning
target volume (PTV) periphery (BEDPTV) which have been shown
to be important predictors of TCP (12, 13). This resulted in a total
of 7 potential predictors, which are summarized in Table 1.
BEDs were calculated based on the LQ formalism as
BEDISO=PTVZn$dISO=PTV

�
1þ dISO=PTV

a=b

�
, where n denotes the

number of fractions, dISO/PTV the dose per fraction to the isocenter
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or PTV periphery, respectively, and a/b is assumed to be 10 Gy.
The wide variation of fractionation schemas resulted in a broad
range of BEDs. For example, the minimum BEDISO of 48 Gy
corresponded to 5 � 6 Gy (100%) in 1 patient, and the maximum
of 262.5 Gy was achieved with schedules of 3 � 20 Gy (80%) in
15 patients or 3 � 15 Gy (60%) in 7 patients, respectively. The
most frequently used fractionation schemas were 3 � 15 Gy
(65%) in 26.6% of the patients and 3 � 12.5 Gy (65%) in 20.8%
of the patients.

Statistical tests

Differences between patients with and without local control were
assessed through the Wilcoxon rank sum test. Receiver operating
characteristic (ROC) curves were compared with the method of
DeLong et al (20) using the R package pROC (21). P values <.05
were considered significant. When averaging results, we report the
mean and its standard error. For the classification, if a continuous
variable was missing for a patient, we assigned the median of its
available values.

The SVM classifier

An SVM is a supervised machine learning classifier that is trained
on a set of data with known class labels to subsequently classify
data with unknown class membership. During training, the SVM
maps the input data into a multidimensional feature space, where
it separates 2 classes by finding a linear decision boundary with a
maximum margin around it that ideally contains no members of
the 2 classes (22, 23). The decision boundary may correspond to a
nonlinear boundary in the original data space. In this work,
mapping of the input data vectors x is done by a radial basis
function kernel with a single parameter g that must be specified
before training:

K
�
xi; xj

�
Zexp

�� g
��xi � xj

��2� ð1Þ
To deal with the problem of regularization for noisy data, a

user-specified cost parameter C is introduced that acts to soften
the margin. The cost parameter controls the trade-off between
allowing transgression of data points across the margin edges
toward the other class and a more complex boundary that might
lead to overfitting. The representative members of the 2 classes
that have transgressed across the margin edges are called the
support vectors, and they define the decision boundary.

We used a Java implementation of the freely available software
package LIBSVM (24) together with a self-written routine for data
reading, preparation, processing, and output. The original version

of this classifier was developed for classification of astronomical
objects (25). The positive class was defined as local failure. Before
training, all continuous data were preprocessed by standardizing
to zero mean and unit variance. The same offset and scaling were
applied to the test data. Our SVM implementation delivers output
probabilities for belonging to a particular class that can be used to
order the data and construct ROC curves (26).

Evaluation of classifier performance

Performance of the classifier was based on area under the ROC
curve (AUC). To estimate the test performance of the SVM (ie, the
performance expected on an independent test set), we used strat-
ified 10-fold cross-validation (CV). We randomly split the positive
and negative examples from our dataset into 10 disjunct parts,
each time combining a positive and negative part to yield 1 fold
with roughly the same proportion of positive to negative instances
as in the original dataset. Each of the 10 folds was then used in
turn as a test set, and the remaining 9 folds were used to build the
training set as described below. For each of these training-evalu-
ation runs the (C,g) pair yielding the largest AUC was identified
separately using grid search over the range C Z 2�2,2�1,.,214

and g Z 2�13,2�12,.,23. The best classification results from each
training-evaluation run were pooled together to generate a ROC
curve according to the procedure given in Fawcett (26).

Training set modification

Stratified CV creates training sets with a class distribution
resembling that of the whole sample, in our case containing about
7 times more negative than positive instances. Inasmuch as such
an unbalanced class distribution in the training set of a supervised
learning algorithm can lead to poor classification performance
(27), we tested 2 strategies to correct for it. The first strategy was
undersampling (US), which randomly removes instances from the
negative class until their number matches that of the positive
examples. US results in fast computation times, but it has the
drawback of losing potentially valuable information contained in
the removed examples. We therefore investigated the synthetic
minority over sampling technique (SMOTE) introduced by
Chawla et al (28) as a second strategy. With SMOTE, the minority
class is oversampled to a degree N by creating for each instance of
the minority class new synthetic instances in the data space along
the trajectories to N out of 5 randomly chosen nearest neighbors.
We used NZ1, so for each positive class member in the training
set we randomly chose 1 of its 5 nearest positive neighbors,

Table 1 Patient characteristics

Feature No. of patients Local control Local recurrence P value

Age (y): median (range) 399 72 (31-92) 73 (50-85) .58
Baseline KI: median (range) 373 80 (40-100) 80 (60-100) .80
Baseline FEV1 (l): mean � SEM 335 1.58 � 0.04 1.81 � 0.13 .17
Baseline FEV1%: mean � SEM 320 60.4 � 1.4 68.1 � 4.2 .11
Maximum tumor diameter (cm): median (range) 210 2.5 (0.8-4.8) 2.9 (1.1-4.7) .11
BEDPTV (Gy): mean � SEM 399 94.9 � 1.4 83.2 � 3.4 .007
BEDISO (Gy): mean � SEM 399 172.3 � 2.8 141.2 � 5.8 .0001

Abbreviations: BEDISO Z biologically effective dose at the isocenter; FEV1 Z forced expiratory volume in 1 second; KI Z Karnofsky index;

SEM Z standard error of the mean.

BEDs are calculated with a/b Z 10 Gy (see text for details).
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subtracted their input feature vectors, and multiplied each entry in
the resulting vector with a uniform random number between 0 and
1 to create a new synthetic positive example in data space. Con-
trary to simply doubling the negative instances in the training set,
SMOTE should lead to a denser distribution of positive instances
and a better-defined decision boundary (27). Finally, we randomly
undersampled the negative instances until their number equaled
the sum of the positive and synthetic examples. Therefore, the
combination of SMOTE and US conserves more negative
instances than plain US.

Input feature selection

To identify the variables with the most predictive power, we used a
feature forward selection algorithm similar to that described by
Chen et al (16). Briefly, parameters were added and eventually
replaced successively as input features to train the SVM, each
time evaluating the AUC with 10-fold CV as described above,
until the best SVM model in terms of AUC had been built.

Because the selection of features could depend on the random
number used to split the sample into 10 different folds, we
repeated the feature selection procedure 10 times with different
random number seeds. To eliminate features that might have been
selected as a result of overfitting for a particular division into
training/testing sets, the final classifier included only those fea-
tures that were selected in at least 5 of the 10 feature selection
runs. The final classifier was evaluated by randomly changing the
patient assignment into training/testing groups 100 times and
computing the average AUC, sensitivity, specificity, and accuracy
with 10-fold CV as described before. The ROC points from each
of the 100 trials were linearly interpolated to 150 points, so that an
averaged and smoothed ROC curve could be computed for graphic
display.

Comparison with a standard TCP modeling
technique

Other studies have used simple dose cutoffs (10, 11) or a logistic
TCP model (5, 29, 30) to classify patients into high-risk and low-
risk populations. We compare our SVM-based classification with
the latter technique by means of the AUC. A class of multivariate
logistic TCP models was defined by

TCPZexp

 
b0 þ

Xp
iZ1

bixi

!
O

"
1þ exp
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iZ1

bixi

!#
ð2Þ

where xi is one out of p predictors ð1 � p � 7Þ and the bi are
regression coefficients. The significance of an individual predictor
in a logistic model was assessed through the t statistic based on the
residual standard error of its coefficient. The full multivariate
model fitted to all patient data was used to check for multi-
collinearity among the input features using variance inflation
factors. We then determined the best set of predictors by forward
feature selection based on the Akaike Information Criterion (AIC)
using all available patients, and we used 10-fold CV to estimate
the test performance of this best model (23).

Results

Patients who experienced local recurrence received significantly
less BEDPTV and BEDISO (Table 1). Consistently, BEDPTV

(PZ.02) and BEDISO (PZ.0001) were significant predictors in
univariate logistic regression, whereas only BEDISO was signifi-
cantly associated with local control in the full multivariate logistic
regression model (Eq. 2) with all 7 features (PZ.001). All vari-
ance inflation factors were below 2.5, indicating no strong
collinearity in the data. The best logistic regression model was
obtained with BEDISO and FEV1 as predictors yielding
AIC Z 281.99.

The cross-validated test performances of this bivariate model
and of the 2 univariate logistic models are given in Table 2. The
AUC of the former, to which we will simply refer as “the logistic
TCP model” in the following, was 0.680 � 0.040 with an optimal
TCP cutoff at 87.1%, yielding sensitivity and specificity of 63.3%
and 66.0%, respectively (64.7% accuracy). It is displayed graph-
ically in Figure 1, with parameters being the averaged (“cross-
validated”) maximum likelihood parameters from each of the 10
CV training runs. This model suggests increasing TCP with
increasing BEDISO and, in particular at low BEDISO, decreasing
FEV1.

The results of the SVM feature selection are presented in
Table 3 for both strategies of creating balanced training sets,
namely, US and SMOTE þ US. The corresponding ROC curves
are shown in Figure 2 together with the ROC curve obtained from
the best logistic TCP model. The mean AUC, sensitivity, speci-
ficity, and accuracy taken over all 10 feature selection trials are
also given in Table 3. For all SVM classifiers, the AUC was larger
than that of the logistic model, but the differences were statisti-
cally significant only when the combination of SMOTE and US
was used (PZ.012 � .003). The better classification performance
coincided with more selected input features, probably reflecting a
wider variability in the feature space caused by more training data
(see also supplementary online material, available at www.
redjournal.org). The superior performance of SMOTE þ US
compared with plain US motivated us to use this same strategy for
the final classifier, which was built with the following features that
were selected by at least 5 of the 10 SVMs used for feature se-
lection (Table 3): BEDISO, age, baseline Karnofsky index (KI),
and FEV1. The selection of these features was insensible against
using 2-fold CV instead of 10-fold CV.

Table 2 contains the results for the final classifier with
SMOTE þ US. The small standard error of the mean AUC
indicates that the performance of the final SVM was insensitive to
the particular data splitting into the CV folds. In Figure 3 we have
plotted the smoothed and averaged ROC curve of the final SVM
model together with the ROC curve of the logistic TCP model.
Comparison of both curves showed that the SVM model’s AUC
was significantly larger than that of the TCP model (PZ .032 �
.002). By use of an output probability threshold at 50%, the
average sensitivity and specificity for the SVM were 67.0% and
78.7%, respectively (72.8% accuracy).

Discussion

In this work we have shown that an SVM significantly improves
TCP predictions compared with a logistic doseeeffect model by
taking into account additional treatment plan and patient charac-
teristics besides BED. Together with the fruitful attempts of
SVM-based prediction of severe radiation-induced pneumonitis
undertaken by Chen et al (16), Das et al (31), and Naqa et al (14),
our investigation suggests that SVMs and other machine-learning
methods could be valuable tools leading to improved prediction of
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high-risk and low-risk groups, thus helping the clinician to
balance the benefit of the treatment with the anticipated risk.

Traditional radiobiological modeling based on mathematical
descriptions of a TCP function has some shortcomings that are
circumvented by using machine learning approaches. First and
foremost, interactions between influencing parameters are usually
complicated and are not known a priori, leaving the investigator
with a trial-and-error approach in the attempt to incorporate them
into formulas that model doseeeffect relationships. In this regard,
parametric models are often limited by their small number of
parameters and by assumptions about correlations among vari-
ables such as linearity, as was the case in the logistic TCP model
we investigated. Second, parametric models are not always
straightforward to interpret. Good examples are logistic TCP
models, as we can easily illustrate with our data: With an uni-
variate model containing only BEDISO as a predictor, we obtain a
cross-validated maximum likelihood value of 1.4 Gy for a
regression parameter usually called TCD50 and interpreted as “the
dose to achieve a 50% TCP” (29). Clearly, this interpretation is not
valid in our case because our data do not span that range (see also
discussion in Ref.5). This example highlights the advantages of
parameter-free classification approaches such as the SVM, which
solely uses the data at hand to find an optimal nonlinear separation
between 2 classes in the space spanned by the variables of interest
and whose results are easily interpretable in terms of outcome

probabilities. Finally, machine learning methods usually perform
better than traditional logistic regression on small datasets (14).

Our selection of BED as an input feature is an example of
applying a priori knowledge about interaction between varia-
blesdin this case, number of fractions and fraction dosedas part
of the data selection step with the goal of increasing data
heterogeneity and improving predictive power (9). Previous
studies have clearly established the importance of both BEDISO

and BEDPTV for determining TCP (12), whereas our results sug-
gest that BEDISO might be the better surrogate for the dose
actually delivered to the tumor in this study cohort, consistent with
the findings of Guckenberger et al (11). We further showed that
taking into account age, baseline KI, and FEV1 improves pre-
dictive performance, although none of these variables would be
useful as a sole predictor.

Baseline KI was always selected next to BEDISO by the SVM
but played no role in multivariate logistic modeling, which points
toward a higher-order interaction between these 2 variables. By
contrast, our data implicated a decrease in the pulmonary function
indicator FEV1 as a predictor of higher TCP at a given BEDISO

(Fig. 1). For example, assuming all patients receiving
BEDISO Z 150 Gy, TCP would be predicted as 93% for those with

Table 2 Performance of 3 logistic TCP models and the final SVM classifier

Classifier Parameters AUC TCP cutoff (%) Sensitivity (%) Specificity (%) Accuracy (%)

Logistic model BEDPTV 0.610 � 0.043 87.3 77.6 46.6 62.1
Logistic model BEDISO 0.662 � 0.037 87.1 63.3 64.9 64.1
Logistic model BEDISO, FEV1 0.680 � 0.040 87.1 63.3 66.0 64.7
SVM BEDISO, FEV1, KI, age 0.789 � 0.001 50 67.0 � 0.5 78.7 � 0.3 72.8 � 0.2

Abbreviations: AUC Z area under the curve; BEDISO Z biologically effective dose at the isocenter; FEV1 Z forced expiratory volume in 1 second;

KI Z Karnofsky index; SMOTE Z synthetic minority over sampling technique; SVM Z support vector machine; TCP Z tumor control probability;

US Z undersampling.

All performance measures are based on 10-fold cross-validation and are given as mean � standard error of the mean (SEM). SEMs are calculated from

100 trials with different splits of training and test sets in case of the SVM or (for AUC only) by the method of DeLong et al (20) in case of the logistic

TCP models.

Fig. 1. Maximum likelihood fit of the logistic
tumor control probability model. The cross-validated
maximum likelihood parameters were
ðb0; bBEDISO

; bFEV1ÞZð�0:764; �0:0134 Gy�1; 0:5381�1Þ.

Table 3 Results of the feature selection

US SMOTE þ US

Features BEDISO (10) BEDISO(10)
Baseline KI (8) Baseline KI (10)
FEV1 (4) FEV1 (7)
Age (3) Age (6)
Maximum tumor

diameter (2)
BEDPTV (2)

FEV1% (2)
Maximum tumor

diameter (1)
AUC 0.725 � 0.005 0.811 � 0.004
Sensitivity 69.0 � 1.5 69.6 � 2.3
Specificity 65.3 � 1.3 80.1 � 1.6
Accuracy 67.2 � 0.8 74.9 � 0.7

Abbreviations: AUC Z area under the curve; BEDISO Z
biologically effective dose at the isocenter; FEV1 Z forced expiratory

volume in 1 second; KI Z Karnofsky index; BEDPTV Z biologically

effective dose at the planning target volume periphery;

SMOTE Z synthetic minority over-sampling technique;

US Z undersampling. The number in brackets gives the number of

times the specific feature was selected in 10 feature selection trials (see

text for details).
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a FEV1 of 0.4 l but only 78% for those with 2.81. It is beyond the
scope of this paper to investigate whether this represents some real
physiologic effect. Pulmonary function could principally influence
tumor control through its effect on breathing motion during irra-
diation. Stevens et al (32) found no correlation between FEV1 and
tumor motion, but their study was limited by the reliance on
orthogonal 2-dimensional radiographic plates and a small and
heterogeneous patient cohort. Keeping in mind that FEV1 was
unknown for 16% of our patients, we cautiously acknowledge that
FEV1 seems to influence TCP in this large patient cohort, but
further studies are needed to confirm these findings.

Although tumor size is an established prognostic factor for
local recurrence in the literature (3, 4), the maximum tumor
diameter was chosen only 4 out of 10 times as an input feature and
therefore was not used in the final SVM. Patients with local
recurrence had larger tumors, but this difference was not

statistically significant (Table 1). The fact that tumor size was
known for only 210 of the 399 patients, whereas the other patients
were assigned the median tumor diameter, likely downgraded the
importance of this feature.

Considering the clinical relevance of our findings, 2 issues
need to be discussed. First, CV is an established way of estimating
classifier performance on independent test data, but ultimately
such data would be needed to further validate our SVM. Our
multi-institutional database could be seen as an advantage in this
regard, because it already includes interinstitutional variance in
the training data to some extent. However, it also seems clear that
more cases of tumor recurrence after SBRT should be collected to
deal with the class imbalance problem that we addressed by
creating synthetic patients of the positive class through SMOTE
and by undersampling the negative class. Second, given the large
number of potential TCP-influencing variables, predictions from
classifiers that were trained only on a subset of such variables
should be interpreted not as good estimates of a patient’s true TCP
but more as a way to group patients into high-risk and low-risk
groups. Unfortunately, doseevolume metrics were not available,
and we decided to exclude other putative factors influencing
treatment outcome that were unknown for many patients, such as
tumor histology and location (central vs peripheral). It would be
important to investigate these and other factors in future analyses
to improve predictions further. Specifically, markers of tumor cell
and host metabolism such as positron emission tomography scans
using 18F-fluoro-2-deoxy-glucose (33) or blood glucose levels (34)
have emerged as potent predictors of tumor control and survival in
a variety of cancers. Finally, Perez et al (35) have recently
demonstrated that the response of NSCLC to fractionated radia-
tion therapy depends on p53 status, raising the question whether
genotyping tumors will help to improve treatment outcome pre-
dictions in the future (36).
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support vector machine (SVM) classifier (solid line) and the lo-
gistic tumor control probability (TCP) model (dash-dotted line).
The area under the curve (AUC) of the SVM classifier was
significantly larger than that of the logistic TCP model, which
modeled TCP as a function of biologically effective dose at the
isocenter and forced expiratory volume in 1 second (P<.05). Solid
straight line Z a random classifier having AUC Z 0.5.

Volume 88 � Number 3 � 2014 SVM-based prediction of TCP 737



Author's personal copy

3. Onimaru R, Fujino M, Yamazaki K, et al. Steep dose-response rela-

tionship for stage I non-small-cell lung cancer using hypofractionated

high-dose irradiation by real-time tumor-tracking radiotherapy. Int J

Radiat Oncol Biol Phys 2008;70:374-381.

4. Guckenberger M, Wulf J, Mueller G, et al. Dose-response relationship for

image-guided stereotactic body radiotherapy of pulmonary tumors: Rele-

vance of 4D dose calculation. Int J Radiat Oncol Biol Phys 2009;74:47-54.

5. Ohri N, Werner-Wasik M, Grills IS, et al. Modeling local control

after hypofractionated stereotactic body radiation therapy for stage

I non-small cell lung cancer: A report from the elekta collabora-

tive lung research group. Int J Radiat Oncol Biol Phys 2012;84:

e379-e384.

6. Choi NC, Fischman AJ, Niemierko A, et al. Dose-response relation-

ship between probability of pathologic tumor control and glucose

metabolic rate measured with FDG PET after preoperative chemo-

radiotherapy in locally advanced non-small-cell lung cancer. Int J

Radiat Oncol Biol Phys 2002;54:1024-1035.

7. Ruggieri R, Stavreva N, Naccarato S, et al. Computed 88% TCP dose

for SBRT of NSCLC from tumour hypoxia modelling. Phys Med Biol

2013;58:4611-4620.

8. El Naqa I. Machine learning methods for predicting tumor response in

lung cancer. WIREs Data Mining Knowl Discov 2012;2:173-181.

9. Lambin P, Van Stiphout RG, Starmans MH, et al. Predicting outcomes

in radiation oncology: Multifactorial decision support systems. Nat

Rev Clin Oncol 2013;10:27-40.

10. Hof H, Muenter M, Oetzel D, et al. Stereotactic single-dose radio-

therapy (radiosurgery) of early stage nonsmall-cell lung cancer

(NSCLC). Cancer 2007;110:148-155.
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