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a b s t r a c t

Introduction: Stereotactic body radiation therapy (SBRT) is applied in the oligometastatic setting to treat

liver metastases. However, factors influencing tumor control probability (TCP) other than radiation dose

have not been thoroughly investigated. Here we set out to investigate such factors with a focus on the

influence of histology and chemotherapy prior to SBRT using a large multi-center database from the

German Society of Radiation Oncology.

Methods: 452 SBRT treatments in 363 patients were analyzed after collection of patient, tumor and treat-

ment data in a multi-center database. Histology was considered through random effects in semi-

parametric and parametric frailty models. Dose prescriptions were parametrized by conversion to the

maximum biologically effective dose using alpha/beta of 10 Gy (BEDmax).

Results: After adjusting for histology, BEDmax was the strongest predictor of TCP. Larger PTV volumes,

chemotherapy prior to SBRT and simple motion management techniques predicted significantly lower

TCP. The model predicted a BED of 209 ± 67 Gy10 necessary for 90% TCP at 2 years with no prior

chemotherapy, but 286 ± 78 Gy10 when chemotherapy had been given. Breast cancer metastases were

significantly more responsive to SBRT compared to other histologies with 90% TCP at 2 years achievable

with BEDmax of 157 ± 80 Gy10 or 80 ± 62 Gy10 with and without prior chemotherapy, respectively.

Conclusions: Besides dose, histology and pretreatment chemotherapy were important factors influencing

local TCP in this large cohort of liver metastases. After adjusting for prior chemotherapy, our data add to

the emerging evidence that breast cancer metastases do respond better to hypofractionated SBRT com-

pared to other histologies.

� 2017 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 123 (2017) 227–233

Stereotactic body radiation therapy (SBRT) has evolved as the

guideline recommended treatment for inoperable patients with

stage I NSCLC [1] and can safely be offered to operable patients

who decline surgery [2]. Fostered by this evolution and by techni-

cal advances in delivery technology including sophisticated motion

management methods and image-guided radiotherapy, its use has

been expanded to virtually all body sites.

Although SBRT has been established for liver metastases as

early as for lung cancer, small sampled prospective phase I/II trials

and only slightly larger retrospective reports have been published.

One of the reasons is that many different non-surgical local abla-

tive treatment strategies have emerged at the same time compet-

ing at a similar patient population as SBRT. Data prospectively

comparing these treatment options are largely lacking.

To overcome the limitations of small sized retrospective

research reports, we implemented the multi-center SBRT database

initiative within the German Society of Radiation Oncology

(DEGRO) to collect data on SBRT treatments and outcomes from
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different radiation centers experienced in SBRT. With these data, it

is possible to increase statistical power for modeling purposes to

derive predictive factors of local failure and overall survival in

order to establish recommendations regarding patient selection,

dose prescription and fractionation.

The focus of this analysis is to establish a dose–response rela-

tionship based on the biological effective dose (BED) and to inves-

tigate the influence of histology and pre-SBRT chemotherapy on

local control of liver metastases treated with SBRT. A detailed

radiobiological modeling of these respective factors will be pre-

sented, and the possible impact for dose selection will be

discussed.

Materials and methods

Dataset

Our analysis is based on a multi-center SBRT database within

the framework of the German Society of Radiation Oncology

(DEGRO) and consists of 623 liver metastases in 464 patients trea-

ted with SBRT at 17 German and Swiss institutions between 1997

and 2015. This database was designed as a SBRT patterns-of-care

database within the DEGRO initiative and headed by the DEGRO

SBRT working group. Primary inclusion criteria were patients trea-

ted with SBRT for liver metastases from any histology-proven pri-

mary solid tumor. The participating centers used � based on

available technology, tumor size and location in correlation to

organs-at-risk � a center-specific fractionation schedule. A

detailed description of patient, tumor and treatment characteris-

tics was collected retrospectively and collated in a tabular data

structure. The multicenter data collection and analysis was

approved by the Ethics committee of the Kanton Zurich, Switzer-

land (BASEC-Nr. 2016-00744). The data collection of the individual

participating centers was approved according to local regulations

by the respective local ethics committees.

The number of fractions ranged between 1 and 13 (median 3).

Most treatments were planned with inhomogeneous dose distribu-

tions with PTV encompassing doses most frequently prescribed to

the 80% isodose line (32% of all SBRT treatments). While the pre-

scribed and maximum PTV doses were available for all patients,

the mean GTV dose was missing for 61% of treatments. Due to

missing data for several patient and treatment characteristics we

here concentrated on variables that were available for �80% of

the recoded treatments and removed observations with missing

information. The resulting sample consists of 452 treatments of

363 patients with complete information on time of last follow-

up, tumor recurrence (yes/censored), age, gender, chemotherapy

within 3 months prior to SBRT (yes/no), dose algorithm used for

treatment planning (pencil beam/more advanced algorithms), his-

tology and PTV volume. The PTV rather than the GTV or CTV based

volumes was chosen as a surrogate for tumor volume, because it

was missing for only 75 metastases while the latter were missing

for 302 metastases. The motion management technique was cate-

gorized into simple (free breathing, abdominal compression) ver-

sus advanced (breath-hold, gating, tracking) techniques. Only

histological subtypes with more than 20 SBRT treatments were

considered as distinct classes for modeling; the remainder was

grouped together into the class ‘‘other”. Local failure of a meta-

static lesion was defined as either reappearance after complete

remission or re-growth after initial partial response in follow-up

CT or MRI scans. PET-CT scans were used by only a few centers

in equivocal cases to confirm local recurrence, usually under the

conditions that (a) a pre-therapeutic PET-CT was available, (b) time

since SBRT was more than 12 months and (c) dynamics of SUVmax

rose above twice the normal liver SUV or above the pre-treatment

levels [3]. Confirmatory biopsies in case of radiological diagnosis of

local recurrences were not routinely performed. Table 1 provides

an overview of the patient and treatment characteristics of our

sample.

Local tumor control probability (TCP) model specification

This analysis focused on the cause-specific hazard of local fail-

ure only. Death was considered a competing event and handled

the same as the usual censorings. Modeling was performed per

metastasis rather than on a per patient basis. Because there are

many different metastases subtypes, we did not include histology

as a fixed effect in a Cox proportional hazards model as this could

require too many parameters to be estimated, leading to a break-

down of asymptotic assumptions and possibly overestimating the

effects of certain histological subtypes [4]. Furthermore, it would

not allow computation of the variability between these subtypes.

Such variability can arise due to unobserved factors that we are

not able to explicitly model, such as genetic heterogeneity. Frailty

models allow to take unobserved heterogeneity into account when

modeling time-to-event data [4–6]. We therefore used shared

frailty models in which the metastases were grouped according

to their histology into ‘‘clusters”, with all metastases in a cluster

sharing the same association between the risk of recurrence and

any unobserved factors. These associations are known as ‘‘frailties”

or ‘‘random effects” and modeled as random variables drawn from

a parametric probability distribution [4,6]. We used two types of

shared frailty models, a parametric and a semi-parametric one.

The latter is also known as a mixed effects Cox model [5]

hijðtÞ ¼ h0ðtÞ expðx
T
ijbþwiÞ ð1Þ

where hijðtÞ is the conditional hazard function for the jth metastasis

from the ith cluster ðj ¼ 1; . . .ni; i ¼ 1; . . . ; sÞ, h0ðtÞ the baseline haz-

ard, wi the random effect for the ith cluster, xTij ¼ ðxij1; . . . ; xijpÞ the p

fixed effects covariates and b their corresponding regression coeffi-

cients. The frailties expðwiÞ act as factors by which the baseline haz-

ard function is multiplied; metastases in a cluster with a negative or

positive random effect have a lower and higher risk of recurrence,

respectively, than an average metastasis which has wi ¼ 0.

In Eq. (1) the random effects are assumed to stem from a normal

distribution, wi � Nð0; cÞ, with mean 0 and variance c. Estimates

for b and c can then be obtained by maximizing a penalized partial

likelihood function; for more details see Therneau et al. [5] or

chapter 5.2 in Duchateau and Janssen [4].

A parametric shared frailty model was used in order to translate

the heterogeneity between the different histological subtypes

quantitatively into the spread of TCP from cluster to cluster. We

specified a Weibull distribution for the event times such that the

baseline hazard function could be expressed as h0ðtÞ ¼ kqtq�1 with

scale parameter k > 0 and shape parameter q > 0. We further

specified a gamma frailty distribution with mean one and variance

h, which relates to the variance of the random effect wi for cluster i

from Eq. (1) according to c ¼ w0ð1=hÞ with w0 the trigamma distri-

bution (chapter 5.2.4 in [4]). Fitting this model to the data, the

tumor control probability after time t in cluster i can be estimated

as

ŜiðtÞ ¼ expð�k̂tq̂expðxTijbþwiÞÞ: ð2Þ

All covariates given in Table 1 were incorporated as fixed effects

into the models, except for number of fractions and prescribed and

maximum PTV dose. Instead, we used BEDmax, for which we have

previously shown that it correlates better with local control than

the PTV encompassing BED [7,8]. Eq. (2), was used to estimate

the dose needed to achieve a certain TCP at a specified follow-up

time, and standard errors were derived from bootstrapping the

data 100 times.
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Analysis was performed using R version 3.1.3 with the coxme

package for fitting the semi-parametric mixed effects Cox model

(Eq. (1)) and the parfm package [9] for fitting the parametric frailty

model (Eq. (2)). Since models were nested, differences between the

fixed and mixed effects Cox models were assessed using the max-

imum likelihood ratio test. In addition the difference in the second-

order bias corrected Akaike Information Criterion (AICC) was used

for model comparison, with a difference of DAICC > 4 indicating

that the model with the smaller AICC value should be preferred

[10]. Prior to model fitting, all numeric covariates (BED, age, tumor

volume) where rescaled to mean 0 and standard deviation 0.5 to

set them on the same scale as the categorical covariates which

were coded as 0 and 1 [11].

Results

Median overall survival of all patients was 20.8 months (95% CI

17.7–24.9 months). The actuarial survival rate was 71% (67–77%)

and 45% (39–51%) at one and two years, respectively. For the 452

treated liver metastases, 100 local recurrences were observed up

to 43.1 months (crude rate 22.1%). The estimated one, two and

three year local control estimates according to Kaplan–Meier were

78% (95% CI 74–83%), 64% (58–71%) and 60% (53–68%), respectively

(Fig. 1A).

Overall, a clear dose–response relationship was present over the

range of the fractionation schemes used after conversion to

BEDmax: without taking confounding factors into account a BEDmax

of 102 ± 23 Gy10 and 192 ± 37 Gy10 was necessary to achieve a local

control of at least 80% and 90%, respectively, at 1 year.

The univariate frailty model (Eq. (1)) resulted in a significantly

better fit than the Cox model (p = 0.00494, DAICC = 7.9), suggesting

that neglecting heterogeneity among metastases could lead to

biased estimates of the regression coefficients. Indeed, without

adjusting the Cox model for histology, BEDmax was not as strong

a predictor for local tumor control as anticipated (Supplementary

Table 1). Only after adjusting for histology, BEDmax became the

most significant predictor as expected. Thereby every increase by

42.1 Gy10 (one standard deviation) was associated with a 28%

decreased risk of recurrence (HR = 0.72, 95% CI = [0.56,0.91]).

Besides BEDmax, the PTV volume, tumor histology, chemotherapy

prior to SBRT, dose calculation algorithm and motion management

method were all significantly associated with local TCP in both the

fixed and the mixed effects Cox model (Supplementary Table 1).

Thereby, significant correlations between BEDmax, PTV volume

and motion management technique were present (larger volumes

and less advanced motion management techniques associated

with lower dose; larger PTV volumes associated with less advanced

motion management). These and other correlations between the

covariates are given in Supplementary Table 2. These correlations

did not translate into high multicollinearity in the model, however,

as indicated by small values (K1:2) of the variance inflation

factors.

Fig. 1B shows the Kaplan–Meier curve for local tumor control of

all metastases stratified according to chemotherapy treatment

prior to SBRT. Patients with chemotherapy prior to SBRT had a sig-

nificantly reduced local control at two years, 58% (51–67%) vs 83%

(74–93%).

The effect of histology on TCP is shown in Table 2, which pro-

vides the random effect estimates in descending order together

with the corresponding hazard ratios and 95% CIs. The estimated

variance parameter was c ¼ 0:470. Among the different histologi-

cal subtypes, metastases originating from breast cancer stood out

as the ones with the highest TCP in relation to BEDmax, the effect

reaching statistical significance (p = 0.033). On the contrary, pan-

creatic cancer and colorectal histology tended to have a worse local

control, although this effect did not reach statistical significance

(p = 0.072 and p = 0.159). The interpretation of the random effect

estimates as relative risks thus suggests that – everything else

being equal – patients with metastases originating from breast

cancer had a 58% lower risk of recurrence than the average metas-

tasis, while in contrast metastases from pancreatic and colorectal

cancers had a 154% and 59% higher risk of recurrence. Note,

Table 1

Patient and treatment characteristics for our sample of 363 patients with 452 SBRT treatments.

Characteristic Absolute count Percent Median Range

Age [years] 64 15–93

Gender

Male 206 56.7

Female 157 43.3

Chemotherapy prior to SBRT

Yes 354 78.3

No 98 21.7

PTV volume [ccm] 70.4 4.5–1074.0

Histology of primary tumor

Cholangiocellular Carcinoma 43 9.5

Colorectal Cancer 203 44.9

Breast cancer 56 12.4

NSCLC 28 6.2

Pancreatic cancer 20 4.4

Ovarian cancer 20 4.4

Other 82 18.1

Motion management

Simple 296 65.5

Advanced 156 34.5

Dose calculation algorithm

Pencil beam 181 40.0

Advanced 271 60.0

Number of fractions 3 1–13

Prescribed dose per fraction [Gy] 9.9 2.1–28

PTV max dose [Gy] 13.6 3.0–42.1

BEDmax [Gy10] 129.6 38.5–292.4

BEDmax: Maximum Biologically effective dose to the tumor assuming a/b = 10 Gy. Motion management has been categorized into simple (free breathing, abdominal

compression) and advanced (breath hold, gating, tracking). Chemotherapy specifically addresses chemotherapy given for metastatic disease, within 3 months prior to SBRT.
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however, that especially the latter numbers possess quite large

uncertainties (Table 2). The different radiation responses of col-

orectal and breast cancer metastases are also reflected in the

Kaplan–Meier TCP estimates stratified by histology (Supplemen-

tary Figure 1) yielding actuarial 2-year local control rates of 51%

(95% CI 42–62%), 88% (77–100%) and 73% (63–85%) for colorectal,

breast and other metastases.

Next, we investigated the dependence of TCP from the applied

BEDmax, again stratified according to chemotherapy prior to SBRT.

Fig. 2 shows the two-year tumor control rate as a function of

BEDmax for colorectal and breast cancer subtypes as well as the

average metastasis. Regardless of pre-SBRT chemotherapy, there

was a significant difference between the local control rate of breast

cancer and colorectal histology across the whole dose range, with a

larger spread in the lower dose area and a convergence toward

higher doses. For patients with no prior chemotherapy, there was

a predicted discrepancy of 26% and 18% tumor control rate

between breast and colorectal cancer histology for a BED of

100 Gy10 and 150 Gy10, respectively. For patients who received

prior chemotherapy, this discrepancy at the same dose levels was

even more pronounced with 40% and 31% local control rate.

When no prior chemotherapy was given, the dose needed to

achieve at least 90% tumor control rate was 80 ± 62 Gy10 for breast

cancer compared to 257 ± 74 Gy10 for colorectal cancer. Given this

large TCP difference between metastases of breast cancer and

Fig. 1. Kaplan–Meier plots for all metastases without stratification (A) or stratified by chemotherapy prior to SBRT (B). The shaded areas represent 95% confidence intervals.

Table 2

Random effects estimates for the univariate frailty model. CCC: Cholangiocarcinoma;

CRC: Colorectal carcinoma; BC: Bronchial carcinoma. The hazard ratios (HR) measure

the relative risk of local tumor recurrence compared to an average metastasis if all

observed covariates are assumed equal.

Histology w0 p-Value HR 95% CI

Pancreas 0.931 ± 0.518 0.072 2.54 [0.92,7.00]

CRC 0.463 ± 0.329 0.159 1.59 [0.83,3.03]

Other 0.111 ± 0.378 0.769 1.12 [0.53,2.34]

Ovarian �0.120 ± 0.477 0.801 0.89 [0.35,2.26]

BC �0.150 ± 0.474 0.752 0.86 [0.34,2.18]

CCC �0.375 ± 0.446 0.400 0.69 [0.29,1.65]

Breast �0.860 ± 0.403 0.033 0.42 [0.19,0.93]

Fig. 2. Density distribution of one-year and two-year TCP over clusters stratified by chemotherapy prior to SBRT. All other covariates were set to their mean for plotting

(corresponding to the mean age of 64 years, BEDmax = 129 Gy10 and 110 ccm PTV volume).
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colorectal cancer, we refitted a Cox proportional hazards model,

now including breast and colorectal histology versus all others as

fixed effects covariates. The regression coefficient estimates for

this model where similar to those of the univariate frailty model

(Supplementary Table 1), with BEDmax again showing the strongest

correlation to the outcome (b̂BEDmax ¼ �0:645, p = 0.007). The effects

of histology were estimated as 0.463 ± 0.251 (p = 0.065) for col-

orectal carcinoma and �1.116 ± 0.447 (p = 0.013) for breast carci-

noma which had the second-strongest association with local

control. Finally, the same model was fit to the female subset of

patients consisting of 160 cases with 42 events. This subset

included 63 and 54 metastases of colorectal and breast origin,

respectively. Interestingly, BEDmax (b̂BEDmax ¼ �0:914, p = 0.017)

and breast histology (b̂MC ¼ �1:135, p = 0.023) were the only sig-

nificant predictors now, while chemotherapy (b̂chemo ¼ 1:072,

p = 0.094) and colorectal histology (b̂CRC ¼ 0:652, p = 0.106) did

not reach statistical significance.

Discussion

The aim of this study was to determine the influence of SBRT

dose, cancer type and chemotherapy given prior to SBRT and their

interactions on the response to SBRT among liver metastases. With

respect to dose–response modeling our current analysis is unique

as it represents the largest collection of liver metastases with in

total 22 different histological subtypes treated with SBRT, although

most of these consisted of very few cases and were grouped

together into one class. However, for seven distinct histological

classes sufficient data were available for modeling heterogeneity

in TCP using frailty models in which histology is treated as a ran-

dom rather than a fixed effect, allowing sufficient power for robust

dose–response modeling and subgroup confounding factor analy-

sis, like histology or pre-SBRT chemotherapy.

Dose–response relationship

Radiation dose as the most significant predictor of local control

is an expected, but also reassuring result indicating plausibility of

our multi-institutional database. The large variety in the number of

fractionations (range 1–13) allowed us to exploit a wide range of

BEDmax values for modeling.

Few attempts for dose–response analysis or modeling have

been published so far [12]. In heavily pretreated patients with pre-

dominantly metastases from colorectal carcinoma, Lanciano et al.

[13] reported a local control rate at two years of 75% for a

BED > 100 Gy compared to only 38% with lower doses. After dose

escalation from 4 � 10 Gy to 3 � 15 Gy to the PTV periphery corre-

sponding to a BED of 80 Gy10 and 112.5 Gy10, respectively,

Vautravers-Dewas et al. [14] observed an increase in local control

rate from 86% to 100% at 1 year. The first true dose–response mod-

eling has been published by Chang and colleagues for colorectal

only metastases [15], followed shortly thereafter by Stinauer

et al. [16] for melanoma and renal cell carcinoma metastases using

a logistic tumor control probability model. BED of 90 Gy10 yielded a

local TCP of 80% in colorectal cancer metastases, whereas 110 Gy10
were required for melanoma and renal cell cancer metastases.

In our analysis, a consistent dose–response relationship was

observed, which was valid for the whole range of fractionation

schedules after conversion to BED. Our analysis further implies

that for an average metastasis without prior chemotherapy a PTV

maximum BED of more than 124 ± 63 Gy10 is necessary to achieve

80% local control at two years; this increases to more than

209 ± 67 Gy10 PTV maximum BED in order to reach 90% local con-

trol (Fig. 2, Supplementary Table 2).

Using PTV BEDmax in our current analysis as a surrogate for the

dose delivered to the tumor was chosen for two reasons: 1. it is a

robust dosimetric value and rather independent of the dose calcu-

lation algorithm [17] or motion management and target volume

concept used [18]. 2. As SBRT is mostly prescribed inhomoge-

neously with a dose maximum within the PTV between 120–

150% of the PTV encompassing dose (most frequently 125% in

our database), the steep dose gradient within the PTV margin

and the high dose plateau within the GTV/ITV seem more relevant

for effective local control [19]. These results are in line with

recently published reports by Swaminath et al. and Andratschke

et al. indicating that the dose to the GTV is the more relevant dosi-

metric parameter for local control in gantry-based [20] or robotic

[21] radiosurgery compared to PTV minimum dose. Nevertheless,

this indicates the necessity of standardization of SBRT prescription

and reporting in order to truly compare different SBRT schedules in

a meaningful way. Especially, the ICRU report on SBRT prescription

and reporting is eagerly awaited in this respect which will be an

important step toward harmonizing SBRT schedules.

Besides dose several other variables were significantly corre-

lated with local TCP, indicating better outcome for smaller tumors

and advanced motion management techniques and dose calcula-

tion algorithms. This was despite significant correlation between

each other, which is expected to increase the uncertainty of the

individual regression coefficients. For example, although PTV size

and motion management technique were correlated, the PTV effect

on TCP is predominantly a function of tumor cell density/count as

GTV size and PTV size were correlated.

The effect of pre-SBRT chemotherapy

Without controlling for histology, the influence of chemother-

apy on local TCP was larger than SBRT dose expressed as BEDmax,

possibly induced by the high correlation between chemotherapy

and histology (Supplementary Table 2). Indeed, there was a signif-

icant improvement in the TCP model fit when histology was

accounted for as a random effect. A significantly larger proportion

of metastases with colorectal (chemotherapy in 84.2% of cases) and

breast cancer histology (83.9%) received chemotherapy prior to

SBRT compared to other histological subtypes (70.5%, p = 0.003).

As summarized in Supplementary Table 3, our model predicts that

metastases treated with prior chemotherapy would require sub-

stantially higher radiation doses to achieve the same level of TCP.

It is important to note that chemotherapy prior to SBRT was also

associated with worse TCP in a similar database of pulmonary

metastases [22].

There are several hypotheses for the effect of chemotherapy

prior to SBRT on TCP. As PTV definition was based primarily on

the GTV with an additional margin for organ movement and/or

setup uncertainty, macroscopic tumor shrinkage after pre-SBRT

chemotherapy may have yielded smaller PTV volumes with mar-

ginal miss of a microscopic invasion front surrounding the visible

metastases. Then the marginal PTV dose and the steep gradient

outside the PTV may not have been sufficient for sterilizing the

microscopic tumor spread. As we are missing this specific informa-

tion – whether or not metastases were responding to chemother-

apy prior to SBRT – we were not able to test this hypothesis on

our dataset.

Another explanation is that surviving tumor cells after

chemotherapy are more likely to be resistant to another cytotoxic

insult or have acquired improved DNA repair capacity [23], ulti-

mately switching to or selecting for a more radioresistant pheno-

type. Similar reasoning has been put forward to explain the

generally more aggressive behavior of metastatic disease if adju-

vant chemotherapy had been given during treatment for the pri-

mary tumor [24].
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The influence of histology on tumor control probability

Our data indicate significant heterogeneity among liver metas-

tases of different histological subtype (Fig. 2) that – if not adjusted

for – could lead to biased effect estimates for important covariates.

Such heterogeneity may arise from the genetic heterogeneity

between different tumor types. A recent assessment of radiosensi-

tivity in 372 liver metastases based on an index defined through

the expression of 10 individual genes [25] predicted pancreatic

neuroendocrine metastases and colorectal adenocarcinoma metas-

tases to be more radioresistant than other histologies such as

breast or lung adenocarcinoma. Though an intriguing finding, the

small sample size of that study precluded robust dose–response

modeling to validate the hypothesis on their clinical SBRT dataset.

Although CRC metastases exhibited an inferior local control com-

pared to non-CRC metastases in our survival analysis, the respec-

tive radiosenisitivity index of some non-CRC metastases would

indicate an even more radioresistant phenotype.

Several previous studies about SBRT treatment of pulmonary

metastases reported worse local control rates for colorectal histol-

ogy [26–28], while others did not [29–31]. These studies generally

had small sample sizes and accordingly not enough statistical

power to investigate the interplay of several prognostic factors

with histology in multivariable analysis. One of the most important

confounding factors for local control appears to be pre-SBRT

chemotherapy, as shown in our study. As chemotherapy was most

likely administered in most CRC metastases, the finding of a more

resistant phenotype in the previously mentioned studies may be a

consequence of this confounding factor which had not been taken

into account rather than a consequence of an intrinsic radioresis-

tance of CRC metastases.

We previously conducted a similar dose–response modeling

effort of lungmetastases [32]wherehistologywas also incorporated

by random effects, although in a logistic regression model. Here we

used mixed effects Cox models instead of logistic regression, in this

way accounting for censoring and follow-up time as well. For the

lung we had found no difference with respect to the dose needed

to achieve90%TCPof anaveragemetastasis compared toCRCmetas-

tases [32]. Although this former analysis did not account for censor-

ing, its results are expected to be robust in the high-dose region of

the TCP curve where censored observations are most probably

equivalent to long-term tumor control. We confirmed this by re-

analyzing the lung metastases data using the semi-parametric

mixedeffects CoxmodelwithBEDat the isocenter as the sole predic-

tor: in a total of 769 lungmetastases withmedian follow-up time of

11.3 months (range 0.13–124.8 months), CRC histology was associ-

ated with a hazard ratio of 0.97 (95% CI = [0.56,1.66], p = 0.903).

In contrast to CRC and other metastases, liver metastases from

breast cancer exhibited a significantly higher TCP over the whole

dose range, regardless of confounding factors such as pre-SBRT

chemotherapy. More interestingly, the results for breast cancer

metastases were comparable in our datasets for liver and lung

metastases, as a re-analysis of the latter with the mixed effects

Cox model revealed a reduced risk of local failure for breast cancer

histology as well (HR = 0.58, 95% CI = [0.28,1.25], p = 0.166). This

finding is also in agreement with the observation of Milano et al.

[33] in a series of oligometastatic patient treated with SBRT show-

ing a better local control for breast cancer metastases in different

organs, even at lower cumulative doses.

Based on these observations we conclude that breast cancer

metastases do respond better to hypofractionated stereotactic

radiotherapy and exhibit a higher TCP compared to metastases

from other primaries. This adds to the emerging evidence that

breast cancer may be particularly well suited for SBRT in oligome-

tastatic disease as high local control with reasonable ablative doses

can be achieved while minimizing toxicity with this approach. A

causative explanation cannot be drawn from the current data,

but our results are in line with recent analyses of hypofractionated

post-lumpectomy data suggesting that breast cancer could have a

lower a/b ratio of around 4 Gy, significantly lower than anticipated

for most other solid tumors [34]. If this is the case, our calculations

in which we used a/b = 10 Gy would have significantly underesti-

mated the BED and this would explain the high TCP at lower

BED10 compared to other solid tumors in our dataset. As there is

considerable uncertainty to tumor specific BED values, we used

an a/b ratio of 10 Gy for all tumor entities in our analysis.

Although our results are robust with regard to statistical

methodology and highly relevant for SBRT practice, we are well

aware of the limitations inherent to our retrospective data collec-

tion including missing information, correct data validation, non-

standardized follow-up and patients lost to follow-up. Still, as no

large-scale prospective data are available our data represent the

most comprehensive data registry, which allows for reliable mod-

eling of dose–response and predictive factors.

Conclusions

A clear dose–response relationship has been observed in our

large cohort of liver metastases from different histologies. Besides

dose, histology and pre-SBRT chemotherapy were important fac-

tors strongly influencing local tumor control. Probably no differing

TCP of CRC metastases compared to other histologies exists;

increased radiation resistance of CRC metastases as reported in

some studies may rather reflect the higher resistance after pre-

SBRT chemotherapy. In contrast, breast cancer metastases showed

a significantly more favorable TCP over the whole dose–response

spectrum regardless of confounding factors, contributing to emerg-

ing evidence that this subtype might be particularly radiosensitive

to high doses per fraction as in SBRT. Since models based on retro-

spective data can only guide in the formulation of hypothesis,

prospective trials are needed to determine the proper dose selec-

tion of SBRT for oligometastatic disease.

Precis

Stereotactic irradiation of liver metastases yields a strong dose–

response relationship that is modified by factors such as

chemotherapy and metastases histology. Breast cancer metastases

respond better to treatment while chemotherapy given prior to

treatment has a negative effect on local tumor control.
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Supplementary Table 1: AICC and fixed effects estimates for the semiparametric 
models 

Model fit Cox model Univariate frailty model 

AICC 1027.2 1019.3 

Variables β HR p-value β HR p-
value 

Age 0.426±0.232 1.531 0.067 0.274±0.229 1.315 0.230 

Sex: Female -0.317±0.207 0.729 0.127 0.148±0.230 1.159 0.520 

PTV volume 0.300±0.164 1.350 0.066 0.340±0.166 1.405 0.041 

Chemotherapy 
prior to SBRT: 
Yes 

0.858±0.317 2.359 0.0069 0.685±0.328 1.984 0.037 

Motion 
management: 
Advanced 

-0.559±0.262 0.572 0.033 -0.595±0.264 0.551 0.024 

Dose 
calculation 
algorithm: 
Advanced 

-0.488±0.226 0.614 0.031 -0.497±0.231 0.608 0.031 

BEDmax -0.497±0.235 0.608 0.035 -0.669±0.244 0.512 0.0061 

The hazard ratio (HR) for a covariate effect is calculated by HR =  exp(�). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 2: Correlations between covariates 

 BEDmax PTV 
volume 

Age Gender Chemo Motion 
management 

Dose 
calculation 

Histology 

BEDmax 1 -0.165** -0.056 0.036 0.032 0.214*** 0.131* 0.072 

PTV volume -0.165** 1 0.037 0.089 0.011 0.223*** 0.167** 0.067 

Age -0.056 0.037 1 0.01 0.243*** 0.073 0.044 0.139 

Gender 0.036 0.089 0.01 1 0.013 0.044 0.055 0.474 

Chemo 0.032 0.011 0.243*** 0.013 1 0.009 0.046 0.286*** 

Motion 
management 

0.214*** 0.223*** 0.073 0.044 0.009 1 0.289*** 0.035 

Dose 
calculation 

0.131* 0.167** 0.044 0.055 0.046 0.289*** 1 0.202* 

Histology 0.072 0.067 0.139 0.474 0.286*** 0.035 0.202* 1 

For the continuous predictors BEDmax, PTV volume and age, the Pearson correlation 
coefficient is given. For categorical variables, Cramer’s V is given (which only takes on 
values between 0 and 1). To correlate the continuous predictors with the categorical 
ones, the former were categorized in values less than or greater or equal than their 
median value. * p<0.01; **p<0.001; ***p<0.00001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 3: BEDmax converted to exemplary clinical dose 
prescriptions to achieve at least 90% local control at 2 years.  

 No prior Chemo Prior Chemo 

Average 
metastases 

209±67 Gy BEDmax 3 × 15 Gy @ 65% 286±78 Gy BEDmax    3 × 17.5 Gy @ 
65% 

Breast cancer   80±62  Gy BEDmax 3 × 8 Gy @ 65%  157±80 Gy BEDmax    3 × 12 Gy @ 65%    

Colorectal Cancer 257±74 Gy BEDmax 3 × 16 Gy @ 65% 335±73 Gy BEDmax 3 × 19 Gy @ 65% 

The BED standard errors were estimated by applying the model fits to 100 bootstrap 
samples. 
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